
Linux on the eLAP

David Gibson
OzLabs, IBM Linux Technology Center

<dwg@au1.ibm.com>

<ukuug@gibson.dropbear.id.au>

Abstract

The IBM r© PowerPC r© 405LP is an embedded CPU
designed especially for handheld applications. Like
other PowerPC 4xx CPUs, it includes a number
of peripheral devices built into the CPU die itself,
such as an LCD controller, PCMCIA controller and
serial ports. The 405LP also includes a number of
novel power management features. As well as being
able to power on and off the various chip compo-
nents as necessary, it can adjust the CPU core and
internal bus frequencies with very low latency al-
lowing the the chip to provide high performance
when necessary, but low-power operation the rest
of the time.

The IBM PowerPC 405LP PDA Reference De-
sign, also known as the Embedded Linux Applica-
tion Platform, or eLAP, is a sample board made by
IBM based on the 405LP (see [4] or [7]). It is de-
signed to run Linux and demonstrate the 405LP’s
capabilities. It is expected that handheld devices
derived from this design will be made and sold by
third parties. The hardware in this device is very
different from a typical PC or server, so we exam-
ine what is involved in getting Linux to deal with
the device’s peculiarities and take advantage of the
hardware’s features. We pay particular attention
to power management.

1 The hardware

1.1 The CPU

The IBM PowerPC 405LP is a CPU from the Pow-
erPC 4xx family. This series of CPUs is designed
for “system-on-chip” embedded applications. As
the name suggests these processors are implemen-
tations of the PowerPC ArchitectureTM, however

they have some notable differences from “classic”
PowerPC CPUs (as used in IBM pSeriesTM servers
and Apple workstations). The 4xx CPUs operate
at much lower clock rates (and hence are cooler
and cheaper), although they are in the high end by
embedded standards. They have a much simpler
MMU (just a software loaded TLB) and they have
no floating point unit.

More interestingly, the 4xx CPUs include a num-
ber of peripheral devices built into the CPU die
itself (hence the term “system-on-chip”). Differ-
ent CPUs in the family are designed for differ-
ent applications and so have different sets of on-
chip peripherals. The 405LP is aimed at handheld,
battery-powered applications and includes an LCD
controller, PCMCIA/Compact Flash controller and
real time clock along with more general purpose de-
vices. Other 4xx chips can include devices such as
Ethernet controllers, HDLC interfaces, PCI host
bridges, IDE and USB controllers.

The 405LP also includes a number of features
to reduce power consumption, some of which are
quite novel. The chip’s base power consumption is
already quite low: it will run at 266MHz with no
heatsink or fan. The various on-chip devices can be
individually turned on and off, saving power when
they are not in use. In addition, the CPU clock
speed and the frequencies of the several internal
buses can be adjusted while the CPU is operating.
This allows the OS to adjust the CPU’s compute
and IO performance, allowing a high peak perfor-
mance when necessary, but keeping power usage to
a minimum the rest of the time. This adjustment
can be done quickly (microseconds in many cases),
and without disrupting the running system, which
allows the system to take advantage of even brief
periods of inactivity to save power.

The 405LP can also operate at a number of differ-

1



ent voltages, and the voltage can also be adjusted
while the CPU is running (although with much
higher latency). With appropriate board-level sup-
port, this allows for further savings in power con-
sumption. Power usage is directly proportional
to the frequency, but to the square of the oper-
ating voltage (for a fixed frequency). The maxi-
mum frequency is roughly proportional to the volt-
age. Thus, voltage scaling can achieve much greater
power savings than frequency adjustment alone.

1.2 The eLAP

The IBM PowerPC 405LP PDA Reference Design
(also known as the Embedded Linux Application
Platform or eLAP) is, as the name suggests, a
handheld design based on the 405LP and designed
to demonstrate the CPU’s capabilities in a hand-
held device. Figure 1 shows a block diagram of the
eLAP, including the devices built into the 405LP
itself. In addition to the devices within the 405LP,
the eLAP includes some RAM and flash memory
and a number of additional peripherals. Most of
these are connected via a simple bus driven by the
405LP’s on-chip External Bus Controller (EBC)
unit. In particular it has several ways of attaching
further external devices: in addition to the PCM-
CIA controller built into the 405LP, the eLAP has
both a socket for Secure Digital (SD) memory and
IO cards and a Phillips ISP1161 USB interface.
This chip is both a USB host controller (allowing
USB devices like keyboards and mice to be con-
nected to the eLAP) and a USB client interface
(allowing the eLAP to be connected to a PC as a
USB device).

An extra debug and development sled can be at-
tached to the eLAP, also shown in Figure 1. It
includes an Ethernet controller, the physical PCM-
CIA slot driven by the 405LP’s PCCF core and
the physical connectors for the USB host port and
serial port.

2 Current support

As the name “Embedded Linux Application Plat-
form” suggests, the eLAP is intended to have Linux
as its OS. Although work is still in progress in some
areas, kernel support now exists for most of the
hardware and features of the device. The devel-

opment for this has mostly been done by IBM and
MontaVista Software building on the code support-
ing other PowerPC 4xx processors which has ex-
isted for some time1.

Unfortunately, for various historical reasons, the
code for the eLAP has not yet been merged into
the standard 2.4 or 2.5 Linux development trees.
In fact what little 4xx support is in the 2.4 tree
is broken, and the 4xx code in 2.5 is quite in-
complete. Eventually the 4xx and eLAP code
should be merged back into the mainstream trees
— once someone can find the time to do the nec-
essary cleanups, consolidation and merging. For
now, most of the development for 4xx based ma-
chines, including the eLAP, takes place in the
linuxppc 2 4 devel BitKeeper tree ([1]).

MontaVista Software maintains a distribution
for embedded devices, which has been used as
the basis for the userspace software on the eLAP.
This distribution also includes a kernel which in-
cludes the eLAP and other 4xx support from
linuxppc 2 4 devel (or at least will in a future
release). It also includes a few extra pieces for
the eLAP which have not yet been merged into the
linuxppc 2 4 devel tree.

2.1 Booting and the basics

As a handheld device, the eLAP is designed to
boot from flash memory. The eLAP’s flash is wired
so that the CPU will execute the eLAP firmware,
PIBS (PowerPC Initialization and Boot Software),
from flash at power-on. PIBS performs some ba-
sic hardware configuration (such as initialising the
405LP’s SDRAM controller) then boots the Linux
kernel. It does this by loading the kernel image into
RAM then jumping to it, much as LILO does on a
normal PC.

Usually the kernel image is stored in another sec-
tion of flash, but for development purposes PIBS
can also load a kernel over the serial port, or (if the
development sled is attached) over Ethernet. The
kernel image will usually include an initial ramdisk
with a basic userland for the device. The startup
scripts will then usually mount a JFFS2 filesystem
which takes up the remainder of the flash memory
and contains the rest the userspace programs and
data. For development it is also possible to use an

1[5] covers Linux 4xx support more generally.

2



� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

USB

MDOC

SDIO

FPGA

PCCF

TCPA

LED Ctrl

USB Gadget

SDIO

Tricolour LED

Frontlight
TDES

IIC
Touchpanel

GPIO

Buffers

USB Host

Ethernet

PCMCIA

Battery ADC

CSI Audio Codec
Speakers

Microphone

Line in/out

Buttons

LCD Panel

32MB SDRAM

UIC

O
n−

bo
ar

d 
P

er
ip

he
ra

l B
us

 (O
P

B
)

External Bus

Frontlight Ctrl

405LP
PowerPC 405LP PDA Reference Design (eLAP)

SDRAM

EBC

LCDC

POB

DMAC

D
ev

ic
e 

C
on

tro
l R

eg
is

te
r (

D
C

R
) B

us

P
ro

ce
ss

or
 L

oc
al

 B
us

 (P
LB

)

I2C Bus

Debug Sled

32MB NOR Flash

Core
PowerPC 405

Ethernet MAC

UART1

UART0

TS Ctrl.

RS232

PLB
OPB
External Bus

Interrupt Line
Other connection
DCR Bus
I2C Bus

Socket

Physical device

External connection

RTC

CPM

APM

APM Power management unit, implements the CPU sleep/suspend states
(NB: this is not related to the APM BIOS in PC laptops)

Audio Codec Texas Instruments TLV320AIC23 stereo audio codec
Battery ADC ADS7823 ADC monitoring battery voltage

CPM Clock and Power Management unit
CSI Codec Serial Interface (interface to audio codec devices)

DMAC DMA controller (can DMA to/from devices on both the PLB and OPB)
EBC External Bus Controller

Ethernet MAC RTL8109 Ethernet controller
Frontlight Ctrl DS1050 LCD frontlight controller

GPIO General Purpose IO interface

IIC I2C bus interface (both master and slave capable)
LED Ctrl BU8770KN tricolour LED driver

LCDC LCD display controller

MDOC 64M of M-Systems Millennium Plus Disk-on-Chip (NAND
flash with specialised controller)

PCCF PCMCIA and Compact Flash controller (16-bit only, not Card-
Bus)

POB PLB-to-OPB bridge
RTC Real Time Clock
SDIO Toshiba TC6380AF Secure Digital and SDIO interface

SDRAM SDRAM controller
TCPA Atmel AT97SC3201 TPM
TDES Triple-DES accelerator

TS Ctrl Semtech UR7HCT52 S840L touchscreen controller
UARTx NS16550 compatible UARTs

UIC Universal Interrupt Controller
USB Phillips ISP1161 USB interface (includes both host controller

and target interface)

Figure 1: Block diagram of the eLAP

NFS root filesystem.

The kernel includes drivers for the 405LP’s built
in serial ports, and uses one of these (UART0) for
the console. Of course the console is only expected
to be used for development and debug. The kernel
also has full support for the 405LP’s LCD controller
(framebuffer device) and the Semtech touchscreen
controller attached to the second serial port. The
normal interface to the device is through the Qtopia
GUI running on the handheld’s built in LCD dis-
play.

2.2 Bells and whistles

In addition to the devices needed for basic op-
eration, most of the peripherals on the 405LP
and the rest of the eLAP are supported in the
linuxppc 2 4 devel tree. The 405LP’s real-time
clock and GPIO lines are fully supported, as is its
PCCF (PCMCIA and Compact Flash) controller
which drives the PCMCIA slot in the eLAP’s de-
velopment sled. Likewise the I2C interface (IIC) is
supported as are the eLAP’s I2C devices. The TI
audio codec which is controlled via I2C is supported

3



in conjunction with the 405LP’s CSI, to form a
complete audio device. The eLAP’s buttons and
its multicolour LED, accessed via a custom FPGA,
are both supported, as is the RTL8019 Ethernet on
the development sled.

The Phillips USB chip is partially supported.
There is a driver for the host controller side of the
chip, although this has not been merged into the
linuxppc 2 4 devel tree (it is in MontaVista’s ker-
nel). Similarly a driver for the Atmel TCPA chip
exists, but only has an external module which has
not been merged into the development tree. In any
case the driver is of very limited use without con-
siderable userspace library support, which is still in
progress. A driver for the Toshiba SDIO chip has
been written by Toshiba with IBM’s assistance, but
is only available in binary form. SD Association
rules prevent Toshiba from releasing specifications
to write an open source driver, with luck this will
change eventually.

3 Continuing and future work

3.1 Missing drivers

Although, as we have seen, most of the the eLAP’s
hardware is already supported, a few devices still
lack drivers. The most obvious of these is the
M-Systems Disk-on-Chip (MDOC), which com-
prises the bulk of the handheld’s storage. A
driver for this device, developed by M-Systems and
adapted for the eLAP with IBM and MontaVista’s
assistance, does now exist. Unfortunately a num-
ber of technical hitches — hardware and software
— have delayed getting problems ironed out of this
driver. The most difficult problems now seem to
have been resolved, so MDOC support should be
working in the near future.

Using the USB target side of the Phillips USB
chip — allowing the eLAP to act as a USB device —
is, as yet, wholly unsupported. Adding support for
this is made more difficult by the fact that, unlike
USB host controller support, USB gadget support
is not yet in the mainstream kernel trees. However,
some groups, notably Lineo2, have worked on USB
gadget support, so it should be possible to use this
work as a basis for a driver for the eLAP.

2See http://opensource.lineo.com/usb/

The 405LP’s triple-DES accelerator (TDES) is
also unsupported thus far. It is quite a simple de-
vice to operate, however, and a driver should ap-
pear in due course — so far it has not had a high
priority.

3.2 Power management

The obvious importance of reducing power con-
sumption in a battery powered device makes sup-
port for power management on the eLAP partic-
ularly interesting. A number of power manage-
ment techniques are already supported on the de-
vice, but work continues to best take advantage of
the 405LP’s features in this area.

The simplest form of power management sup-
ported by the eLAP is suspend and resume, that
is, powering off most of the device while preserving
the state of the OS and applications. This is just
like the “sleep” modes supported on most laptops.
The 405LP’s APM core supports several different
methods of preserving the CPU state.

In the eLAP, suspend-to-RAM is implemented
by saving the CPU’s register state to RAM, ensur-
ing caches are flushed, then switching the SDRAM
into a self-refresh mode to preserve its contents.
The device is then powered off, except for the RAM
and the power management units themselves. The
suspend code also records a special flag in an un-
used bit in one of the real time clock registers
(which are preserved while the device is off, of
course), and stores a pointer to a restore routine at
a fixed address in memory. When the device is pow-
ered on again, the PIBS firmware checks the flag to
determine that the device has been suspended and
instead of booting normally passes control to the
Linux restore routine. This restores the register
state from memory and resumes running.

In order for this to work properly, device drivers
also need to shut down devices before suspending,
then re-initialise them and restore their state after
resume. The most important eLAP drivers, such as
the LCDC driver do this already, but some other
drivers still need to have suspend support added.

Similarly, some drivers already support powering
the device they control off when possible to save
power. Other drivers still need to be enhanced to
save power in this manner. The power to the on-
chip devices is controlled by the Clock and Power
Management (CPM) core, while power to most of

4



the off-chip devices is controlled by registers in the
FPGA or by GPIO lines.

3.2.1 Dynamic Power Management

Of course, by far the most interesting aspect of
power management on the 405LP is its ability to
adjust operating frequency and voltage while run-
ning. Linux support for this is under continuing
development by IBM and MontaVista. This and
other means of saving power while the machine
is running are known as “dynamic power manage-
ment” (DPM).

This simplest way of using this capability is to
allow the user to explicitly select a particular fre-
quency and voltage mode, and this mode of oper-
ation is already supported. This approach is anal-
ogous to that used by the cpufreq3 project which
allows frequency adjustment on a number of other
CPUs (although the 405LP implementation is, for
now, independent of the cpufreq infrastructure).
However this fails to really make use of the 405LP’s
abilities: because the 405LP can adjust frequency
with particularly low latency we want to take ad-
vantage of this by automatically adjusting the fre-
quency to match runtime requirements.

How to best automatically manage frequency and
voltage scaling is still under active investigation. A
promising scheme developed at IBM’s Austin Re-
search Lab is described in [2] and partially imple-
mented for the eLAP.

The essence of this approach is for the kernel to
keep track of which “operating state” it is in at
any moment. The operating states include things
such as “idle”, “executing user code”, “executing
an interrupt handler” and so forth. If different pro-
cesses on the system have different compute or IO
requirements they could have different operating
states e.g., “IO intensive task” or “compute inten-
sive task”.

When the operating state changes, the kernel
consults a DPM “policy” to map the new state to
an “operating point” — that is, a set of frequency
and voltage parameters. The DPM policy can itself
be changed at runtime in order to adapt to longer
term changes in performance requirements. This is
handled by a userspace program known as a DPM
policy manager. Suitably modified application pro-

3See http://www.brodo.de/cpufreq_old/

grams could give hints to the policy manager to let
it better anticipate their performance requirements.
For example, a video playback program might in-
form the policy manager that it needs a certain
amount of compute time in order to maintain full
speed playback.

The problem is complicated by the fact that some
devices in the system may only operate properly at
certain bus frequencies. These devices place con-
straints on what operating points can be selected
when they are active. The scheme in [2] allows
drivers to register these constraints with the DPM
subsystem so that they can be properly taken into
account.

3.3 Consolidation and cleanups

In addition to ongoing work to add support for cur-
rently missing features on the eLAP, some work on
consolidation and cleanup of the existing code will
be needed as the eLAP support is merged back into
the main kernel trees. Many of the problems faced
supporting the eLAP also affect other PowerPC 4xx
based machines or other embedded devices gener-
ally. This work is somewhat delayed by the need for
consolidation and cleanup of the general PowerPC
4xx kernel code.

Most of the devices on the eLAP— particularly
those built into the 405LP — are quite different to
what would be found on a normal PC or server ma-
chine. They are neither “standard” devices for the
architecture nor devices found on a standard bus,
such as PCI, which can be systematically probed.

At the moment the kernel locates most of these
devices by ad-hoc methods. Many of the drivers
are eLAP specific and “just know” that a particular
device exists at a particular address. This approach
quickly becomes messy as the kernel supports more
embedded machines — especially when a particular
peripheral is included in multiple embedded devices
connected in slightly different ways.

The 4xx code in the linuxppc 2 4 devel tree
includes a partial solution to this problem for the
on-chip devices: the OCP (for “On-Chip Periph-
eral”) subsystem uses a table of devices for a partic-
ular CPU to properly initialise each of the drivers,
which can be common across multiple 4xx CPUs.
However, this system has a number of implemen-
tation problems and an improved and consolidated
approach handling both on and off-chip embedded

5



devices is needed. [6] covers this topic in more de-
tail.

Finally, the eLAP power management code is
quite 405LP specific at the moment. However, it
has a certain amount of overlap with the function-
ality of the cpufreq mechanism. The techniques
used on the eLAP are also likely to be applicable
to more embedded machines in the future. At some
point, thus, the power management code will need
consolidation into a flexible and portable dynamic
power management framework, though this might
be best left until it is better understood what tech-
niques work well in practice.

References

[1] linuxppc 2 4 devel kernel tree. bk://ppc@
ppc.bkbits.net/linuxppc_2_4_devel.

[2] H. Blanchard, B. Brock, M. Locke, M. Orvek,
R. Paulsen, and K. Rajamani. Dynamic power
management for embedded systems.
http://www.research.ibm.com/arl/
projects/papers/DPM_V1.1.pdf, 2002.

[3] IBM Corporation. PowerPC r© 405LP
Embedded Processor User’s Manual,
preliminary edition, 2002.

[4] Bruce Gain. Handheld multimedia: the Linux
connection. Tom’s Hardware Guide, 2003.
http://www6.tomshardware.com/business/
20030129/linuxworld-02.html#handh%eld_
multimedia_the_linux_connection.

[5] David Gibson. Linux on the powerpc 4xx. In
Conference Proceedings AUUG2002: Measure,
Monitor, Control, 2002.
http://www.auug.org.au/winter/auug2002/
AUUG2002-proceedings.ps.gz.

[6] David Gibson. Device discovery and power
management in embedded systems. In
Proceedings of the Ottawa Linux Symposium,
2003.

[7] Linuxdevices.com. IBM unveils Linux-based
PDA reference design. Linuxdevices.com, 2003.
http://www.linuxdevices.com/news/
NS9222005703.html.

About the author

David Gibson is an employee of the IBM Linux
Technology Center, working from Canberra, Aus-
tralia. Most recently he has been working on board
and device bringup for Linux on embedded Pow-
erPC machines, along with various bits of kernel
infrastructure for cleanly supporting PowerPC 4xx
and other system-on-chip CPUs. He is also the
author and maintainer of the orinoco driver for
Prism II based 802.11b NICs. In the past he has
worked on ramfs (as included in the -ac kernel
tree), and “esky”, a userspace implementation of
checkpoint/resume.

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, PowerPC, PowerPC Architecture and
pSeries are trademarks or registered trademarks
of International Business Machines Corporation in
the United States and/or other countries.

Linux is a registered trademark of Linus Tor-
valds.

Other company, product, and service names may
be trademarks or service marks of others.

6


